Twoim problemem jest to, że powszechną NICOŚĆ mylisz z osobistą PUSTKĄ



Wcięcie kątowe wprzód: Dane: M, N; Mierzone: α, β; Wyznaczane: XP, YP.

 

 

Wcięcie liniowe: Dane: A, B; Mierzone: d1, d2; Wyznaczane XP, YP, γ- ze współrzędnych



CA=b2+c2-a2 CB=a2+c2-b2



Wcięcie Collinsa: Dane: A, B, C; mierzone: α, β, wyznaczane: XP, YP pośrednio. Łączy się okręgiem punkty A i B i na okręgu wyznacza dowolnie punkt pomocniczy Q, kąty γ i δ i wyznaczamy szukany punkt P wcięciem wprzód. Zadanie staje się niewykonalne jeżeli punkt C znajdzie się na okręgu przechodzącym przez A, B i P.

Elektroniczny pomiar długości: długość: D=1/2 Vτ, gdzie τ = tp - tw (różnica czasów powrotu i wyjścia sygnału), V=c/n- prędkość fali elektromagnetycznej, n=f(t, p, e, λ)- współczynnik załamania fali w powietrzu (zależy od temp, ciśn., wilgotności i dł fali),   c-prędkość światła w próżni. Najczęściej używana metoda fazowa (pomiar różnicy faz fali wychodzącej i powracającej)



Błąd pomiaru długości:               Odległość w met. fazowej:  D = λ/2 (N + R) + k, gdzie R=Δφ/2π, λ=c/nf,   f- częstotliwość wzorcowa, k- stała dodawania.

 

 

Transformacja liniowa: parametry transformacji: dX, dY(przesunięcie początku układu), k- wektor przesunięcia, φ- kąt skręcenia, r= dw/dp –współczynnik zmiany skali (dl w ukł wtórnym przez dł w pierw).

Współczynniki transformacji: u= r sinφ, v= r cosφ



dX= dxv-dyu, dY= dxu+dyv              Xi = Xi-1+dX(i-1)-i              Yi = Yi-1+dY(i-1)-i

współczynnik zmiany skali r=pierw(u2+v2) i kąt skręcenia układu φ=arctg u/v Pocz. wtórn w pierw:O’(0,0)A(XA,YA)Pocz. pierw w wtórn:O(0;0),A(xA;yA)





 

 

Transformacja Helmerta: więcej niż 2 punkty dostosowania. x, y- układ pierwotny; X, Y- ukł. wtórny.

1. Bieguny transformacji (śrciężkości):

Δ







xv - Δyu = ΔX

Δyv + Δxu = ΔY



2. współczynniki u i v:

 

3. przyrosty dx, dy, dX, dY

4. współrzędne X, Y 5. współczynnik zmiany skali r=pierw(u2+v2) i kąt skręcenia układu φ=arctg u/v.



Błąd położenia punktu po transformacji:               Korekta potransformacyjna (dla punktów                                          wyższych klas niż przeliczane Np z 65 do 2000)



                            Długości dit liczymy ze współrz. Wielkości poprawek dodajemy do współrz po transformacji.

 

 

 

 

Ciąg wliczeniowy- brak drugiego punktu nawiązania. 1. azymut boku A1-2 obieramy dowolnie 2. obliczamy azymuty kolejnych boków An = An-1 – (n-1)*200G+ βn-1 3. obliczamy przyrosty dx=d cosA, dy=d sinA

4. Dodajemy przyrosty i liczymy współrzędny X i Y 5. Wykonujemy transformację do układu wtórnego.

Przeniesienie współrzędnych-bezpośrednio: Dane: M i N; Mierzone: φ, a<500m; Wyznaczany: Pp.



XPp = XM + a cos(AMN + φ)

              YPp = YM + a sin(AMN + φ)

Błąd wyznaczenia punktu: mPp < 1/3 mM  mPp2 = ma2 + a2 m2 φ

 







Pośrednio- z pośrednim wyznaczeniem elementów przeniesienia, gdy punkty M i N są niedostępne. Z punktu przeniesienia musi być widoczny punkt macierzysty M i wyższego rzędu N. Z punktu pośredniego B widoczny jest punkt przeniesienia Pp i macierzysty M. Dane: M, N; Mierzone: α, β, γ, c; Wyznaczany Pp. Najpierw oblicza się Azymut AMN i odległość b (ze współrz) i oblicza

Kąt φ=180°- (ψ+γ)azymut AMP=AMN+ φ

XPp = XM + a cos(AMN + φ)               YPp = YM + a sin(AMN + φ)

Dodatkowo wyznacza się drugie niezależne wyznaczenie punktu z innej bazy i za ostateczną przyjmuje się średnią (różnica z dwóch pomiarów<1cm). Błąd mPp2 = ma2 + a2 m2 φ

Wyznaczenie ostatniego punktu w ciągu wiszącym: An-1 = A0 + β1 + … + βn-1 – (n-1)*180°



Xn = x1 + s1 cosA1 +…+sn-1 cosAn-1                Yn = y1 + s1 sinA1 +…+sn-1 sinAn-1

Błąd wyznaczenia ostatniego punktu:

 

Redukcje odległości skośnych: Dalmierzami optycznymi (ms≤0,02m)mierzy się boki w dwóch seriach. Każda seria obejmuje pomiar temperatury (mt=5°C) i ciśnienia (mp=5mmHg). Centrowanie dalmierza i luster z błędem mc≤2mm. W wyniku uwzględnia się poprawki atmosferyczne i stałą dodawania dalmierza. Redukcje:

Na poziom instrumentu: K1 = -Δh2/2s = s(1-cosα), Δh -przewyższenie, s- odległość skośna, α- kąt pionowy

Na powierzchnię odniesienia: K2 = (-1/R) hp D, R- promień Ziemi = 6367km, hp- wysokość punktu, D-odległość na poziomie instrumentu. Ostatecznie: D = s + K1 + K2 – odległość zredukowana.

Przy przenoszeniu na płaszczyznę odwzorowania uwzględnia się zniekształcenie odwzorowawcze.

Niwelacja trygonometryczna z uwzględnieniem wpływu refrakcji i krzywizny: h = d cosZA + i + d2/2R (1-k) –w, gdzie d-odległość pomierzona, ZA- kąt zenitalny, i-wysokość instrumentu, d2/2R (1-k)- łączny wpływ krzywizny i refrakcji, w- wysokość lustra. Dla krótkich celowych (d<ok. 400m) d2/2R (1-k)<1cm, można pominąć i przyjąć jako powierzchnię odniesienia płaszczyznę.

Wyznaczanie punktu niedostępnego ze stanowisk pośrednich: Pomierzone: q, α, β, γ1, γ2, O1, O2. Wyznaczana wysokość Hp. HpA = O1 + b tg γ1  HpB = O2 + a tg γ2     a/sin α = b/sin β = q/sin(α + β)  Hśr=(HpA+HpB)/2              m2HpA = (tg γ1)2 mb2 + (b/cos2 γ1)2 m2 γ1 + mO12 mHśr = mHpA/√2

...
  • zanotowane.pl
  • doc.pisz.pl
  • pdf.pisz.pl
  • jucek.xlx.pl






  • Formularz

    POst

    Post*

    **Add some explanations if needed