Twoim problemem jest to, że powszechną NICOŚĆ mylisz z osobistą PUSTKĄ
P O L I T E C H N I K A P O Z N A Ń S K A
I N S T Y T U T K O N S T R U K C J I B U D O WL A N Y C H
Z a k ł a d M e c h a n i k i B u d o w l i
Ćwiczenienr4
W Y Z N A C Z A N I E S I Ł W P R Ę T A C H
K R A T O W N I C P Ł A S K I C H
Prowadzący
:
mgrinŜ.A.Kaczor
Wykonał:
DariuszWłochal
gr.B6
rokakad.2003/2004
PolitechnikaPoznańska
®
InstytutKonstrukcjiBudowlanych
®
ZakładMechanikiBudowli
Wyznaczaniesiłwprętachkratownicy–metodarównowaŜeniawęzłów,metodaRittera
Proj.1
Zadanie:DladanejkratownicywyznaczyćsiływewszystkichprętachmetodąrównowaŜenia
węzłów.WzaznaczonychprętachwyznaczyćsiłymetodąRittera.
1. Danajestnastępującakratownica:
2.Dyskusjastatycznejwyznaczalnościukładu:
Warunekkoniecznygeometrycznejniezmiennościistatycznejwyznaczalnościkratownicyo
strukturzeprostej:
p
=
2
w
-
r
gdzieodpowiednio: p–liczbaprętówkratownicy
w–liczbawęzłówkratownicy
r–liczbastopniswobodyodbieranychprzezpodpory
Dladanejkratownicymamy:
p
=
15
w
=
9
r
=
2
+
1
=
3
Zatem:
15
=
2
×
9
-
3
15
=
15
0
=
0
Warunekkoniecznygeometrycznejniezmiennościkratownicyostrukturzeprostejjestwięc
spełniony.
3.Dyskusjageometrycznejniezmiennościukładu:
www.ikb.poznan.pl/anita.kaczor
wykonałDarekWłochal,2003/2004
2
PolitechnikaPoznańska
®
InstytutKonstrukcjiBudowlanych
®
ZakładMechanikiBudowli
Wyznaczaniesiłwprętachkratownicy–metodarównowaŜeniawęzłów,metodaRittera
Proj.1
Danakratownica,tokratownicapłaskaostrukturzeprostej.Jestonawięcgeometrycznie
niezmienna(moŜemytraktowaćjąjaktarczęzastępczą).Całytenniezmiennyukład
przytwierdzonyjestdopodłoŜazapomocąpodporyprzegubowoprzesuwnej(zlewejstrony)
ipodporyprzegubowonieprzesuwnej(zprawej).Podparcieodbierawięc:1+2=3stopnie
swobody.PrzegubnieleŜynakierunkuprętacałyukładjestzatemgeometrycznie
niezmienny.
4.Uwolnijmydanąkratownicęodwięzówiwyznaczmyreakcje:
Napiszmyrównaniarównowagiiwyznaczmyreakcje:
0
X
5
-
13
=
H
5
=
13
kN
∑
M
5
=
-
13
×
2
-
10
×
3
-
20
×
7
,
5
+
V
1
×
12
=
0
-
26
-
30
-
150
+
12
×
V
1
=
0
-
206
+
12
×
V
1
=
0
12
×
V
1
=
16667
206
/
12
V
1
=
17
,
kN
∑
Y
=
V
1
-
20
-
10
+
V
5
=
0
17
,
16667
-
30
+
V
5
=
0
V
5
=
12
,
83333
kN
Sprawdzeniepoprawnościwyznaczeniasiłzewnętrznych:
∑
M
3
=
V
1
×
6
-
20
×
1
,
5
+
10
×
3
-
13
×
2
-
V
5
×
6
=
=
17
,
16667
×
6
-
30
+
30
-
26
-
12
,
83333
×
6
=
=
103
,
00002
-
26
-
76
,
99998
=
0
,
00004
»
0
5.Zestawienie–reakcje:
www.ikb.poznan.pl/anita.kaczor
wykonałDarekWłochal,2003/2004
3
∑ H
PolitechnikaPoznańska
®
InstytutKonstrukcjiBudowlanych
®
ZakładMechanikiBudowli
Wyznaczaniesiłwprętachkratownicy–metodarównowaŜeniawęzłów,metodaRittera
Proj.1
6.Wyznaczmysiływprętachkratownicy:
Siły w prętach kratownicy wyznaczymy metodą równowaŜenia węzłów. Dla trzech
zaznaczonych prętów wyznaczymy teŜ siły metodą Rittera sprawdzając w ten sposób
przebiegobliczeńpierwsząmetodą.
DługośćkrzyŜulców:
k
=
( )
1
,
5
2
+
2
2
=
2
25
+
4
=
6
25
=
2
5
m
Awięc:
sin
a
=
2
=
0
8
2
,
5
cos
a
=
1
,
5
=
0
,
6
2
,
5
WĘZEŁ1:
∑
Y
=
17
,
16667
+
S
1
-
9
×
sin
a
=
0
17
,
16667
+
0
,
8
×
S
1
-
9
=
0
0
,
8
×
S
1
-
9
=
-
17
,
16667
/
0
8
S
1
-
9
=
-
21
,
45834
kN
∑
X
=
S
1
-
2
+
S
1
-
9
×
cos
a
=
0
S
1
-
2
-
0
,
6
×
21
,
45834
=
0
S
1
-
2
-
12
,
87500
=
0
S
1
-
2
=
12
,
87500
kN
WĘZEŁ9:
www.ikb.poznan.pl/anita.kaczor
wykonałDarekWłochal,2003/2004
4
,
,
,
,
,
PolitechnikaPoznańska
®
InstytutKonstrukcjiBudowlanych
®
ZakładMechanikiBudowli
Wyznaczaniesiłwprętachkratownicy–metodarównowaŜeniawęzłów,metodaRittera
Proj.1
∑
Y
=
21
,
45834
×
sin
a
-
S
9
-
2
×
sin
a
=
0
21
,
45834
×
0
,
8
-
0
,
8
×
S
9
-
2
=
0
0
,
8
×
S
9
-
2
=
0
,
8
×
21
,
45834
/
0
,
8
S
9
-
2
=
21
,
45834
kN
∑
X
=
S
9
-
2
×
cos
a
+
S
9
-
8
+
21
,
45834
×
cos
a
=
0
21
,
45834
×
0
,
6
+
S
9
-
8
+
21
,
45834
×
0
,
6
=
0
S
9
-
8
+
2
×
0
,
6
×
21
,
45834
=
0
S
9
-
8
=
-
25
,
75001
kN
WĘZEŁ2:
∑
Y
=
21
,
45834
×
sin
a
+
S
2
-
8
×
sin
a
=
0
21
,
45834
×
0
,
8
=
-
0
,
8
×
S
2
-
8
0
,
8
×
S
2
-
8
=
0
,
8
×
21
,
45834
/
0
,
8
S
2
-
8
=
-
21
,
45834
kN
∑
X
=
-
12
,
87500
-
21
,
45834
×
cos
a
+
+
(
-
21
,
45834
×
cos
a
)
+
S
2
-
3
=
0
-
12
,
87500
-
21
,
45834
×
0
,
6
+
-
21
,
45834
×
0
,
6
+
S
2
-
3
=
0
S
2
-
3
=
38
,
62501
kN
WĘZEŁ8:
∑
Y
=
-
20
+
21
,
45834
×
sin
a
-
S
3
-
8
×
sin
a
=
0
-
20
+
21
,
45834
×
0
,
8
-
0
,
8
×
S
3
-
8
=
0
0
,
8
×
S
3
-
8
=
2
,
833328
/
0
,
8
S
9
-
2
=
-
3
,
54166
kN
∑
X
=
S
7
-
8
+
25
,
75001
+
21
,
45834
×
cos
a
+
+
(
-
3
,
54166
)
×
cos
a
=
0
S
7
-
8
+
25
,
75001
+
21
,
45834
×
0
,
6
+
+
(
-
3
,
54166
)
×
0
,
6
=
0
S
7
-
8
=
-
36
,
5000
kN
WĘZEŁ3:
www.ikb.poznan.pl/anita.kaczor
wykonałDarekWłochal,2003/2004
5